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DIRECT SEARCH METHODS: THEN AND NOW*

ROBERT MICHAEL LEWIS', VIRGINIA TORCZON$, AND MICHAEL W. TROSSET§

Abstract. We discuss direct search methods for unconstrained optimization. We give a modern per-

spective on this classical family of derivative-free algorithms, focusing on the development of direct search

methods during their golden age from 1960 to 1971. We discuss how direct search methods are characterized

by the absence of the construction of a model of the objective. We then consider a number of the classical

direct search methods and discuss what research in the intervening years has uncovered about these algo-

rithms. In particular, while the original direct search methods were consciously based on straightforward

heuristics, more recent analysis has shown that in most but not all cases these heuristics actually suffice

to ensure global convergence of at least one subsequence of the sequence of iterates to a first-order stationary

point of the objective function.

Key words, derivative-free optimization, direct search methods, pattern search methods

Subject classification. Applied and Numerical Mathematics

1. Introduction. Robert Hooke and T. A. Jeeves coined the phrase "direct search" in a paper that

appeared in 1961 in the Journal of the Association of Computing Machinery [12]. They provided the following

description of direct search in the introduction to their paper:

We use the phrase "direct search" to describe sequential examination of trial solutions in-

volving comparison of each trial solution with the "best" obtained up to that time together

with a strategy for determining (as a function of earlier results) what the next trial solu-

tion will be. The phrase implies our preference, based on experience, for straightforward

search strategies which employ no techniques of classical analysis except where there is a

demonstrable advantage in doing so.

To a modern reader, this preference for avoiding techniques of classical analysis "except where there is a

demonstrable advantage in doing so" quite likely sounds odd. After all, the success of quasi-Newton methods,

when applicable, is now undisputed. But consider the historical context of the remark by Hooke and Jeeves.

Hooke and Jeeves' paper appeared five years before what are now referred to as the Armijo Goldstein Wolfe

conditions were introduced and used to show how the method of steepest descent could be modified to ensure

global convergence [1, 11, 29]. Their paper appeared only two years after Davidon's unpublished report on

using secant updates to derive quasi-Newton methods [8], and two years before Fletcher and Powell published

a similar idea in The Computer Journal [10]. So in 1961, this preference on the part of Hooke and Jeeves

was not without justification.

Forty years later, the question we now ask is: why are direct search methods still in use'? Surely

this seemingly hodge-podge collection of methods based on heuristics, which generally appeared without
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any attempt at a theoretical justification, should have been superseded by more "modern" approaches to

numerical optimization.

To a large extent direct search methods have been replaced by more sophisticated techniques. As the

field of numerical optimization has matured, and software has appeared which eases the ability of consumers

to make use of these more sophisticated numerical techniques, many users now routinely rely on some variant

of a globalized quasi-Newton method.

Yet direct search methods persist for several good reasons. First and foremost, direct search methods

have remained popular because they work well in practice. In fact, many of the direct search methods are

based on surprisingly sound heuristics that fairly recent analysis demonstrates guarantee global convergence

behavior analogous to the results known for globalized quasi-Newton techniques. Direct search methods

succeed because many of them including the direct search method of Hooke and Jeeves can be shown to

rely on techniques of classical analysis in ways that are not readily apparent from their original specifications.

Second, quasi-Newton methods are not applicable to all nonlinear optimization problems. Direct search

methods have succeeded when more elaborate approaches failed. Features unique to direct search methods

often avoid the pitfalls that can plague more sophisticated approaches.

Third, direct search methods can be the method of first recourse, even among well-informed users. The

reason is simple enough: direct search methods are reasonably straightforward to implement and can be

applied almost immediately to many nonlinear optimization problems. The requirements from a user are

minimal and the algorithms themselves require the setting of few parameters. It is not unusual for complex

optimization problems to require further software development before quasi-Newton methods can be applied

(e.g., the development of procedures to compute derivatives or the proper choice of perturbation for finite-

difference approximations to gradients). For such problems, it can make sense to begin the search for a

minimizer using a direct search method with known global convergence properties, while undertaking the

preparations for the quasi-Newton method. When the preparations for the quasi-Newton method have been

completed, the best known result from the direct search calculation can be used as a "hot start" for one of

the quasi-Newton approaches, which enjoy superior local convergence properties. Such hybrid optimization

strategies are as old as the direct search methods themselves [21].

We have three goals in this review. First, we want to outline the features of direct search that distinguish

these methods from other approaches to nonlinear optimization. Understanding these features will go a long

way toward explaining their continued success. Second, as part of our categorization of direct search, we

suggest three basic approaches to devising direct search methods and explain how the better known classical

techniques fit into one of these three camps. Finally, we review what is now known about the convergence

properties of direct search methods. The heuristics that first motivated the development of these techniques

have proven, with time, to embody enough structure to allow in most instances analysis based on now

standard techniques. We are never quite sure if the original authors appreciated just how reliable their

techniques would prove to be; we would like to believe they did. Nevertheless, we are always impressed by

new insights to be gleaned from the discussions to be found in the original papers. We enjoy the perspective

of forty intervening years of optimization research. Our intent is to use this hindsight to place direct search

methods on a firm standing as one of many useful classes of techniques available for solving nonlinear

optimization problems.

Our discussion of direct search algorithms is by no means exhaustive, focusing on those developed during

the dozen years from 1960 to 1971. Space also does not permit an exhaustive bibliography. Consequently,

we apologize in advance for omitting reference to a great deal of interesting work.



2. What is "direct search"? Forsimplicity,werestrictourattentionto unconstrainedminimization:

(2.1) minimize f(x),

where f : R n _ R. We assume that f is continuously differentiable, but that information about the gradient

of f is either unavailable or unreliable.

Because direct search methods neither compute nor approximate derivatives, they are often described

as "derivative-free." However, as argued in [27], this description does not fully characterize what constitutes

"direct search."

Historically, most approaches to optimization have appealed to a familiar "technique of classical anal-

ysis," the Taylor's series expansion of the objective function. In fact, one can classify most methods for

numerical optimization according to how many terms of the expansion are exploited. Newton's method,

which assumes the availability of first and second derivatives and uses the second-order Taylor polynomial to

construct local quadratic approximations of f, is a second-order method. Steepest descent, which assumes

the availability of first derivatives and uses the first-order Taylor polynomial to construct to construct local

linear approximations of f, is a first-order method. In this taxonomy, "zero-order methods" do not require

derivative information and do not construct approximations of f. They are direct search methods, which

indeed are often called zero-order methods in the engineering optimization community.

Direct search methods rely exclusively on values of the objective function, but even this property is not

enough to distinguish them from other optimization methods. For example, suppose that one would like

to use steepest descent, but that gradients are not available. In this case, it is customary to replace the

actual gradient with an estimated gradient. If it is possible to observe exact values of the objective function,

then the gradient is usually estimated by finite differencing. This is the case of numerical optimization, with

which we are concerned herein. If function evaluation is uncertain, then the gradient is usually estimated

by designing an appropriate experiment and performing a regression analysis. This occurs, for instance,

in response surface methodology in stochastic optimization. Response surface methodology played a crucial

role in the pre-history of direct search methods, a point to which we return shortly. Both approaches rely

exclusively on values of the objective function, yet each is properly classified as a first-order method. What,

then, is a direct search method? What exactly does it mean to say that direct search methods neither

compute nor approximate derivatives?

Although instructive, we believe that a taxonomy based on Taylor expansions diverts attention from the

basic issue. As in [27], we prefer here to emphasize the construction of approximations, not the mechanism

by which they are constructed. The optimization literature contains numerous examples of methods that

do not require derivative information and approximate the objective function without recourse to Taylor

expansions. Such methods are "derivative-free," but they are not direct searches. What is the distinction?

Hooke and Jeeves considered that direct search involves the comparison of each trial solution with the

best previous solution. Thus, a distinguishing characterization of direct search methods (at least in the case

of unconstrained optimization) is that they do not require numerical function values: the relative rank of

objective values is sufficient. That is, direct search methods for unconstrained optimization depend on the

objective function only through the relative ranks of a countable set of function values. This means that

direct search methods can accept new iterates that produce simple decrease in the objective. This is in

contrast to the Armijo Goldstein Wolfe conditions for quasi-Newton line search algorithms, which require

that a sufficient decrease condition be satisfied. Another consequence of this characterization of direct

search is that it precludes the usual ways of approximating f, since access to numerical function values is

not presumed.



Thereareotherreasonsto distinguishdirectsearchmethodswithin thelargerclassof derivative-free
methods.Wehavealreadyremarkedthat responsesurfacemethodologyconstructslocalapproximations
of f by regression. Response surface methodology was proposed in 1951, in a seminal paper by G.E.P.

Box and K.B. Wilson [4], as a variant of steepest descent (actually steepest ascent, since the authors were

maximizing). In 1957, concerned with the problem of improving industrial processes and the shortage of

technical personnel, Box [3] outlined a less sophisticated procedure called evolutionary operation. Response

surface methodology relied on esoteric experimental designs, regression, and steepest ascent; evolutionary

operation relied on simple designs and the direct comparison of observed function values. Spendley, Hext,

and Himsworth [21] subsequently observed that the designs in [3] could be replaced with simplex designs and

suggested that evolutionary operation could be automated and used for numerical optimization. As discussed

in Section 3.2, their algorithm is still in use and is the progenitor of the simplex algorithm of Nelder and

Mead [17], the most famous of all direct search methods. Thus, the distinction that G.E.P. Box drew in

the 1950s, between response surface methodology and evolutionary operation, between approximating f and

comparing values of f, played a crucial role in the development of direct search methods.

3. Classical direct search methods. We organize the popular direct search methods for uncon-

strained minimization into three basic categories. For a variety of reasons, we focus on the classical direct

search methods, those developed during the period 1960-1971. The restriction is part practical, part histor-

ical.

On the practical side, we will make the distinction between pattern search methods, simplex methods

(and here we do not mean the simplex method for linear programming), and methods with adaptive sets of

search directions. The direct search methods that one finds described most often in texts can be partitioned

relatively neatly into these three categories. Furthermore, the early developments in direct search methods

more or less set the stage for subsequent algorithmic developments. While a wealth of variations on these

three basic approaches to designing direct search methods have appeared in subsequent years largely in the

applications literature these newer methods are modifications of the basic themes that had already been

established by 1971. Once we understand the motivating principles behind each of the three approaches, it

is a relatively straightforward matter to devise variations on these three themes.

There are also historical reasons for restricting our attention to the algorithmic developments in the 1960s.

Throughout those years, direct search methods enjoyed attention in the numerical optimization community.

The algorithms proposed were then (and are now) of considerable practical importance. As their discipline

matured, however, numerical optimizers became less interested in heuristics and more interested in formal

theories of convergence. At a joint IMA/NPL conference that took place at the National Physics Laboratory

in England in January 1971, W. H. Swann [23] surveyed the status of direct search methods and concluded

with this apologia:

Although the methods described above have been developed heuristically and no proofs of

convergence have been derived for them, in practice they have generally proved to be robust

and reliable in that only rarely do they fail to locate at least a local minimum of a given

function, although sometimes the rate of convergence can be very slow.

Swann's remarks address an unfortunate perception that would dominate the research community for years

to come: that whatever successes they enjoy in practice, direct search methods are theoretically suspect.

Ironically, in the same year as Swann's survey, convergence results for direct search methods began to appear,

though they seem not to have been widely known, as we discuss shortly. Only recently, in the late 1990s, as

computational experience has evolved and further analysis has been developed, has this perception changed



[3o].

3.1. Pattern search. In his belated preface for ANL 5990 [8], Davidon described one of the most basic

of pattern search algorithms, one so simple that it goes without attribution:

Enrico Fermi and Nicholas Metropolis used one of the first digital computers, the Los

Alamos Maniac, to determine which values of certain theoretical parameters (phase shifts)

best fit experimental data (scattering cross sections). They varied one theoretical parameter

at a time by steps of the same magnitude, and when no such increase or decrease in any one

parameter further improved the fit to the experimental data, they halved the step size and

repeated the process until the steps were deemed sufficiently small. Their simple procedure

was slow but sure, ....

Pattern search methods are characterized by a series of exploratory moves that consider the behavior of

the objective function at a pattern of points, all of which lie on a rational lattice. In the example described

above, the unit coordinate vectors form a basis for the lattice and the current magnitude of the steps (it

is convenient to refer to this quantity as Ak) dictates the resolution of the lattice. The exploratory moves

consist of a systematic strategy for visiting the points in the lattice in the immediate vicinity of the current

iterate.

It is instructive to note several features of the procedure used by Fermi and Metropolis. First, it does

not model the underlying objective function. Each time that a parameter was varied, the scientists asked:

was there improvement in the fit to the experimental data. A simple "yes" or "no" answer determined which

move would be made. Thus, the procedure is a direct search. Second, the parameters were varied by steps of

predetermined magnitude. When the step size was reduced, it was multiplied by one half, thereby ensuring

that all iterates remained on a rational lattice. This is the key feature that makes the direct search a pattern

search. Third, the step size was reduced only when no increase or decrease in any one parameter further

improved the fit, thus ensuring that the step sizes were not decreased prematurely. This feature is another

part of the formal definition of pattern search in [26] and is crucial to the convergence analysis presented

therein.

3.1.1. Early analysis. By 1971, a proof of global convergence for this simple algorithm existed in the

optimization text by Polak [18], where the technique goes by the name method of local variations. Specifically,

Polak proved the following result:

THEOREM 3.1. If {xk } is a sequence constructed by the method of local variations, then any accumulation

point x' of {xk} satisfies Vf(x') O. (By assumption, f(x) is at least once continuously differentiable.)

Polak's result is as strong as any of the contemporaneous global convergence results for either steepest

descent or a globalized quasi-Newton method. However, to establish global convergence for these latter

methods, one must enforce either sufficient decrease conditions (the Armijo Goldstein Wolfe conditions) or

a fraction of Cauchy decrease condition all of which rely on explicit numerical function values, as well as

explicit approximations to the directional derivative at the current iterate. What is remarkable is that we

have neither for direct search methods, yet can prove convergence.

What Polak clearly realized, though his proof does not make explicit use of this fact, is that all of the

iterates for the method of local variations lie on a rational lattice (one glance at the figure on page 43 of his

text confirms his insight). The effect, as he notes, is that the method can construct only a finite number

of intermediate points before reducing the step size by one-half. Thus the algorithm "cannot jam up at a

point" precisely the pathology of premature convergence that the Armijo Goldstein Wolfe conditions are

designed to preclude.



Polakwasnotalonein recognizingthatpatternsearchmethodscontainsufficientstructureto supporta
globalconvergenceresult.Inthesameyear,C_aalsopublishedanoptimizationtext [7]in whichheprovided
aproofofglobalconvergenceforthepatternsearchalgorithmofHookeandJeeves[12].Theassumptions
usedto establishconvergencewerestronger(inadditionto theassumptionthat f C C 1, it is assumed that f

is strictly convex and that f(x) --_ +_ as llxll --_ +_). Nevertheless, it is established that the sequence of

iterates produced by the method of Hooke and Jeeves converges to the unique minimizer of f again with

an algorithm that has no explicit recourse to the directional derivative and for which ranking information is

sufficient.

Both Polak's and C_a's results rely on the fact that when either of these two algorithms reach the

stage where the decision is made to reduce Ak, which controls the length of the steps, sufficient information

about the local behavior of the objective has been acquired to ensure that the reduction is not premature.

Specifically, neither the method of local variations nor the pattern search algorithm of Hooke and Jeeves

allow Ak to be reduced until it has been verified that

f(xk) < f(xk ±Akei), i {1,...,n},

where ei denotes the ith unit coordinate vector. This plays a critical role in both analyses. As long as xk is

not a stationary point of f, then at least one of the 2n directions defined by ±ei, i C {1, ..., n} must be a

direction of descent. Thus, once Ak is sufficiently small, we are guaranteed that either f(xk + Ake_) < f(xk)

or f(xk - Akei) < f(xk) for at least one i C {1,...,n}.

The other early analysis worth noting is that of Berman [2]. In light of later developments, Berman's

work is interesting precisely because he realized that if he made explicit use of a rational lattice structure,

he could construct algorithms that produce minimizers to continuous nonlinear functions that might not

be differentiable. For example, if f is continuous and strongly unimodal, he argues that convergence to a

minimizer is guaranteed.

In the algorithms formulated and analyzed by Berman, the rational lattice plays an explicit role. The

lattice L determined by x0 (the initial iterate) and A0 (the initial resolution of the lattice) is defined by

L(xo, A0) {x [ x x0 + A0k, k c A}, where A is the lattice of integral points of R n. Particularly

important is the fact that the lattices used successively to approximate the minimizer have the following

property: if Lk L(xk, Ak), where Ak A0/_ -k and _- > 1 denotes a positive integer, then Lk C Lk+l.

The important ramification of this fact is that {x0, Xl, x2,..., xk} C Lk+l, for any choice of k, thus ensuring

the finiteness property to which Polak alludes, and which also plays an important role in the more recent

analysis for pattern search.

Before moving on to the more recent results, however, we close with some observations about this

early work. First, it is with no small degree of irony that we note that all three results ([2, 7, 18]) are

contemporaneous with Swann's remark that no proofs of convergence had been derived for direct search

methods. However, each of these results was developed in isolation. None of the three authors appears

to have been aware of the work of the others; none of the works contains citations of the other two and

there is nothing in the discussion surrounding each result to suggest that any one of the authors was aware

of the more-or-less simultaneous developments by the other two. Furthermore, these results have passed

largely unknown and unreferenced in the nonlinear optimization literature. They have not been part of the

"common wisdom" and so it was not unusual, until quite recently, to still hear claims that direct search

methods had "been developed heuristically and no proofs of convergence have been derived for them."

Yet all the critical pieces needed for a more general convergence theory of pattern search had been

identified by 1971. The work of Polak and C_a was more modest in scope in that each was proving convergence



for a single,extantalgorithm,alreadywidelyin use.Berman'sworkwasmoreambitiousin that hewas
definingageneralprinciplewith theintentofderivinganynumberofnewalgorithmstailoredto particular
assumptionsabouttheproblemto besolved.Whatremainedto berealizedwasthat allthisworkcouldbe
unifiedunderoneanalysisandgeneralizedevenfurtherto allowmorealgorithmicperturbations.

3.1.2. Recentanalysis.Recently,a generaltheoryforpatternsearch[26]extendedaglobalconver-
genceanalysis[25]ofthemultidirectionalsearchalgorithm[24].Likethesimplexalgorithmsof Section3.2,
multidirectionalsearchproceedsbyreflectingasimplex(n+ 1pointsin Rn) throughthecentroidof oneof
thefaces.However,unlikethesimplexmethodsdiscussedin Section3.2,multidirectionalsearchis alsoa
patternsearch.

In fact,theessentialingredientsofthegeneraltheoryhadalreadybeenidentifiedby [2,7, 18].First,
thepatternofpointsfromwhichoneselectstrial pointsatwhichto evaluatetheobjectivefunctionmustbe
sufficientlyrichto ensureat leastonedirectionofdescentif zk is not a stationary point of f. For C_a and

l
Polak, this meant a pattern that included points of the form z k zk 4- Akei, i C {1, ..., n}, where the ei

are the unit coordinate vectors. For Berman, it meant requiring A to be the lattice of integral points of R n,

i.e., requiring that the basis for the lattice be the identity matrix I C R _x_.

In [26], these conditions were relaxed to allow any nonsingular matrix/3 C R _x_ to be the basis for the
l l

lattice. In fact, we can allow patterns of the form z k zk + Ak/?7_, where 7k is an integral vector, so that

the direction of the step is determined by forming an integral combination of the columns of B. The special

cases studied by C_a and Polak are easily recovered by choosing/3 - I and 7_ -t-ei, i C {1,..., n}.

Second, an essential ingredient of each of the analyses is the requirement that Ak not be reduced if the

' Generalizations of this requirement wereobjective function can be decreased by moving to one of the z k.

considered in [26] and [15]. This restriction acts to prevent premature convergence to a nonstationary point.

Finally, we restrict the manner by which Ak is rescaled. The conventional choice, used by both C_a and

Polak, is to divide Ak by two, so that Ak A0/2 k. Somewhat more generally, Berman allowed dividing

by any integer r > 1, so that (for example) one could have Ak A0/3 k. In fact, even greater generality is

possible. For _- > 1, we allow Ak+l _-'_Ak, where w is any integer in a designated finite set. Then there

are three possibilities:

1. w < 0. This decreases Ak, which is only permitted under certain conditions (see above). When it is

permitted, then Lk C Lk+l, the relation considered by Berman.

2. w 0. This leaves Ak unchanged, so that Lk Lk+l.

3. w > 0. This increases Ak, so that Lk+l C Lk.

It turns out that what matters is not the relation of Lk to Lk+l, but the assurance that there exists a

single lattice Li C {L0, L1, ..., Lk, Lk+l}, for which Lj C_ Li for all j 0,..., k + 1. This implies that

{z0, ..., zk} C Li, which in turn plays a crucial role in the convergence analysis.

Exploiting the essential ingredients that we have identified, one can derive a general theory of global

convergence. The following result says that at least one subsequence of iterates converges to a stationary

point of the objective function.

THEOREM 3.2. Assume that L(xo)

differentiable on a neighborhood of L(xo).

pattern search algorithm,

{x I f(x) <_ f(xo)} is compact and that f is continuously

Then for the sequence of iterates {xk} produced by a generalized

lim inf [[Vf(xk)[[ O.
k_+oo



Under only slightly stronger hypotheses, one can show that every limit point of {xk} is a stationary point

of f, generalizing Polak's convergence result. Details of the analysis can be found in [26, 15]; [14] provides

an expository discussion of the basic argument.

3.2. Simplex search. Simplex search methods are characterized by the simple device that they use to

guide the search.

The first of the simplex methods is due to Spendley, Hext, and Himsworth [21] in a paper that appeared

in 1962. They were motivated by the fact that earlier direct search methods required anywhere from 2n to

2n objective evaluations to complete the search for improvement on the iterate. Their observation was that

it should take no more than n + 1 values of the objective to identify a downhill (or uphill) direction. This

makes sense, since n + 1 points in the graph of f(x) determine a plane, and n + 1 values of f(x) would be

needed to estimate Vf(x) via finite-differences. At the same time, n + 1 points determine a simplex. This

leads to the basic idea of simplex search: construct a nondegenerate simplex in R n and use the simplex to

drive the search.

A simplex is a set of n + 1 points in R _. Thus one has a triangle in R 2, and tetrahedron in R 3, etc.

A nondegenerate simplex is one for which the set of edges adjacent to any vertex in the simplex forms a

basis for the space. In other words, we want to be sure that any point in the domain of the search can be

constructed by taking linear combinations of the edges adjacent to any given vertex.

Not only does the simplex provide a frugal design for sampling the space, it has the added feature that

if one replaces a vertex by reflecting it through the centroid of the opposite face, then the result is also

a simplex, as shown in Figure 3.1. This, too, is a frugal feature because it means that one can proceed

parsimoniously, reflecting one vertex at a time, in the search for an optimizer.

FIG. 3.1. The original simplex, the re/Zection of one vertex through the centroid of the opposite face, and the resulting

r'eflection simplex.

Once an initial simplex is constructed, the single move specified in the original Spendley, Hext, and

Himsworth simplex algorithm is that of reflection. This move first identifies the "worst" vertex in the

simplex (i.e., the one with the least desirable objective value) and then reflects the worst simplex through

the centroid of the opposite face. If the reflected vertex is still the worst vertex, then next choose the "next

worst" vertex and repeat the process. (A quick review of Figure 3.1 should confirm that if the reflected

vertex is not better than the next worst vertex, then if the "worst" vertex is once again chosen for reflection,

it will simply be reflected back to where it started, thus creating an infinite cycle.)

The ultimate goals are either to replace the "best" vertex (i.e., the one with the most desirable objective

value) or to ascertain that the best vertex is a candidate for a minimizer. Until then, the algorithm keeps

moving the simplex by flipping some vertex (other than the best vertex) through the centroid of the opposite

face.

The basic heuristic is straightforward in the extreme: we move a "worse" vertex in the general direction

of the remaining vertices (as represented by the centroid of the remaining vertices), with the expectation of



eventualimprovementin thevalueoftheobjectiveat thebestvertex.Thequestionsthenbecome:dowe
haveanewcandidatefor aminimizerandareweat ornearaminimizer?

Thefirst questioniseasyto answer.Whena reflectedvertexproducesstrictdecreaseonthevalueof
theobjectiveat thebestvertex,wehaveanewcandidatefor aminimizer;onceagainthesimpledecrease
ruleis ineffect.

Theanswerto thesecondquestionisdecidedlymoreambiguous.In theoriginalpaper,Spendley,Hext,
andHimsworthillustrate in twodimensionsacirclingsequenceofsimplicesthatcouldbeinterpretedas
indicatingthattheneighborhoodofaminimizerhasbeenidentified.WeseeasimilarexampleinFigure3.2,
whereasequenceof fivereflectionsbringsthesearchbackto whereit started,withoutreplacingxk, thus

suggesting that xk may be in the neighborhood of a stationary point.

")'iii _2%\,

F 2

\

)'iii _"

FIc. 3.2. A sequence of reflections {rl, r::, _-:_,_,_5}, each of which fails to replace the best vertex xk, which brings the
search back to the simplex from which this sequence started.

The picture in two dimensions is somewhat misleading since the fifth reflection maps back onto the worst

vertex in the original simple_a situation that only occurs in either one or two dimensions. So Spendley,

Hext, and Himsworth give a heuristic formula for when the simplex has flipped around the current best vertex

long enough to conclude that the neighborhood of a minimizer has been identified. When this situation has

been detected, they suggest two alternatives: either reduce the lengths of the edges adjacent to the "best"

vertex and resume the search or resort to a higher-order method to obtain faster local convergence.

The contribution of Nelder and Mead [17] was to turn simplex search into an optimization algorithm with

additional moves designed to accelerate the search. In particular, it was already well-understood that the

reflection move preserved the original shape of the simplex regardless of the dimension. What Nelder and

Mead proposed was to supplement the basic reflection move with additional options designed to accelerate

the search by deforming the simplex in a way that they suggested would better adapt to the features of the

objective function. To this end, they added what are known as expansion and contraction moves, as shown

in Figure 3.3.

We leave the full details of the logic of the algorithm to others; a particularly clear and careful description,

using modern algorithmic notation, can be found in [13]. For our purposes, what is important to note is that

the expansion step allows for a more aggressive move by doubling the length of the step from the centroid to
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FIG. 3.3. The original simplex, with the reflection, ezpansion, and two possible :,:_.:.s:::s:i_:._. simplices, along with the :s_'_rink

step toward the best vertex Xk, when all else fails.

the reflection point, whereas the contraction steps allow for more conservative moves by halving the length

of the step from the centroid to either the reflection point or the worst vertex. Furthermore, in addition

to allowing these adaptations within a single iteration, these new possibilities have repercussions for future

iterations as they deform (or, as the rationale goes, adapt) the shape of the original simplex.

Nelder and Mead also resolved the question of what to do if none of the steps tried bring acceptable

improvement by adding a shrink step: when all else fails, reduce the lengths of the edges adjacent to the

current best vertex by half, as is also illustrated in Figure 3.3.

The Nelder Mead simplex algorithm has enjoyed enduring popularity. Of all the direct search methods,

the Nelder Mead simplex algorithm is the one most often found in numerical software packages. The original

paper by Nelder and Mead is a Science Citation Index classic, with several thousand references across the

scientific literature in journals ranging from Acta Anaesthesiologica Scandinavica to Zhurnal Fizicheskio

Khimii. In fact, there is an entire book from the chemical engineering community devoted to simplex search

for optimization [28].

So why bother with looking any further? Why not rely exclusively on the Nelder-Mead simplex method

if one is going to employ a direct search method? The answer: there is the outstanding question regarding

the robustness of the Nelder-Mead simplex method that has long troubled numerical optimizers. When the

method works, it can work very well indeed, often finding a solution in far fewer evaluations of the objective

function than other direct search methods. But it can also fail. One can see this in the applications literature,

fairly early on, frequently reported as no more than "slow" convergence. A systematic study of Nelder-Mead,

when applied to a suite of standard optimization test problems, also reported occasional convergence to a

nonstationary point of the function [24]; the one consistent observation to be made was that in these instances

the deformation of the simplex meant that the search direction (i.e., the direction defined along the worst

vertex toward the centroid of the remaining vertices) became numerically orthogonal to the gradient.

These observations about the behavior of Nelder-Mead in practice led to two, relatively recent, investiga-

tions. The first [13], strives to investigate what can be proven about the asymptotic behavior of Nelder-Mead.

The results show that in R 1, the algorithm is robust; under standard assumptions, convergence to a station-

ary point is guaranteed. Some general properties in higher dimensions can also be proven, but none that

guarantee global convergence for problems in higher dimensions.

This is not surprising in light of a second recent result by McKinnon [16]. He shows with several examples

that limits exist on proving global convergence for Nelder-Mead: to wit, the algorithm can fail on smooth
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(C 2) convex objectives in two dimensions.

This leaves us in the unsatisfactory situation of reporting that no general convergence results exist for the

simplex methods of either Spendley, Hext, and Himsworth or Nelder and Mead despite the fact that they

are two of the most popular and widely used of the direct search methods. Further, McKinnon's examples

indicate that it will not be possible to prove global convergence for the Nelder-Mead simplex algorithm in

higher dimensions. On the other hand, the mechanism that leads to failure in McKinnon's counterexample

does not seem to be the mechanism by which Nelder Mead typically fails in practice. This leaves the question

of why Nelder-Mead fails in practice unresolved.

3.3. Methods with adaptive sets of search directions. The last family of classical methods we

consider includes Rosenbrock's and Powell's methods. These algorithms attempt to accelerate the search by

constructing directions designed to use information about the curvature of the objective obtained during the

course of the search.

3.3.1. Rosenbrock's method. Of these methods, the first was due to Rosenbrock [20]. Rosenbrock's

method was quite consciously derived to cope with the peculiar features of Rosenbrock's famous "banana

function," the minimizer of which lies inside a narrow, curved valley. Rosenbrock's method proceeds by a

series of stages, each of which consists of a number of exploratory searches along a set of directions that are

fixed for the given stage, but which are updated from stage to stage to make use of information acquired

about the objective.

The initial stage of Rosenbrock's method begins with the coordinate directions as the search directions.

It then conducts searches along these directions, cycling over each in turn, moving to new iterates that yield

successful steps (an unsuccessful step being one that leads to a less desirable value of the objective). This

continues until there has been at least one successful and one unsuccessful step in each search direction.

Once this occurs, the current stage terminates. As is the case for direct search methods, numerical values

of the objective are not necessary in this process. If the objective at any of these steps is perceived as being

an improvement over the objective at the current best point, we move to the new point.

At the next stage, rather than repeating the search process with the same set of orthogonal vectors, as

is done for the method of local variations, Rosenbrock rotates the set of directions to capture information

about the objective ascertained during the course of the earlier moves. Specifically, he takes advantage of

the fact that a nonzero step from the iterate at the beginning of the previous stage to the iterate at the start

of the new stage suggests a good direction of descent or, at the very least, a promising direction so in the

new stage, he makes sure that this particular direction is included in the set of directions along which the

search will be conducted. (This heuristic is particularly apt for following the bottom of the valley that leads

to the minimizer of the banana function.) Rosenbrock imposes the condition that the set of search directions

always be an orthogonal set of n vectors so that the set of vectors remains nicely linearly independent. The

new set of orthonormal vectors is generated using the Gram-Schmidt orthonormalization procedure, with

the "promising" direction from the just-completed stage used as the first vector in the orthonormalization

process.

Rosenbrock's method as applied to his banana function is depicted in Fig. 3.4. The iterate at the

beginning of each stage is indicated with a square. Superimposed on these iterates are the search directions

for the new stage. Note how quickly the search adapts to the narrow valley; within three stages the search

directions reflect this feature. Also notice how the search directions change to allow the algorithm to turn

the corner in the valley and continue to the solution.

Updating the set of search directions for Rosenbrock's method entails slightly more complexity than that

11
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FIG. 3.4. Rosenbrock's algorithm in action

which appears in any of the other two families of direct search methods we have surveyed. On the other

hand, the example of the banana function makes the motivation for this additional work clear: adapting

the entire set of search directions takes advantage of what has been learned about the objective during the

course of the search.

3.3.2. The variant of Davies, Swann, and Campey. A refinement to Rosenbrock's algorithm was

proposed by Davies, Swann, and Campey [22]. 1 Davies, Swann, and Campey noted that there was merit to

carrying out a sequence of more sophisticated one-dimensional searches along each of the search directions

than those performed in Rosenbrock's original algorithm.

As described in [23], the more elaborate line search of Davies, Swann, and Campey first takes steps of

increasing multiples of some fixed value A along a direction from the prescribed set until a bracket for the

(one-dimensional) minimizer is obtained. This still corresponds to our definition of a direct search method.

However, once a bracket for the one-dimensional minimizer has been found, a "single quadratic inter-

polation is made to predict the position of the minimum more closely" [23]. This is the construction of a

1A paper the authors have been unable to locate. The authors would be very much obliged to any reader who has a copy

of the original report and would forward a photocopy to us.
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model of the objective, and to do this, numerical values for the objective must be in hand. Thus, this final

move within an iteration disqualifies the method of Davies, Swann, and Campey as a direct search method

by our characterization. Nonetheless, this strategy is undeniably appealing, and its authors aver that this

variant of I{osenbrock's method is more generally efficient than the original [6].

3.3.3. Powell's method. In a paper appearing the same year as the report by Swann [22], Powell [19]

outlined a method for finding minimizers without calculating derivatives. By the definition we are using, it

is a derivative-free, rather than a direct search method, for modeling is at the heart of the approach. The

explicit goal is to ensure that if the method is applied to a convex quadratic function, conjugate directions

are chosen with the goal of accelerating convergence. In this sense, Powell's algorithm may be viewed as a

derivative-free version of nonlinear conjugate gradients.

Like I{osenbrock's method, Powell's method proceeds in stages. Each stage consists of a sequence of n+ 1

one-dimensional searches. The one-dimensional searches are conducted by finding the exact minimizer of a

quadratic interpolant computed for each direction (hence our classification of the method as a derivative-free,

but not direct search, method). The first n searches are along each of a set of linearly independent directions.

The last search is along the direction connecting the point obtained at the end of the first n searches with

the starting point of the stage. At the end of the stage, one of the first n search directions is replaced by the

last search direction. The process then repeats at the next stage.

Powell showed that if the objective is a convex quadratic, then the set of directions added at the last step

of each stage forms a set of conjugate directions (provided they remain linearly independent). Powell used

this, in turn, to show that his method possessed what was known then as the "Q-property." An algorithm

has the Q-property if it will find the minimizer of a convex quadratic in a finite number of iterations. That

is, the Q-property is the finite termination property for convex quadratics such as that exhibited by the

conjugate gradient algorithm. In the case of Powell's method, one obtains finite termination in n stages for

convex quadratics.

Zangwill [31] gave a modification of Powell's method that avoids the possibility of linearly dependent

search directions. Zangwill further proved convergence to minimizers of strictly convex functions (though

not in a finite number of steps).

To the best of our knowledge, Powell's method marks the first time that either a direct search or

a derivative-free method appeared with any attendant convergence analysis. The appeal of the ezplicit

modeling of the objective such as that used in the line-searches in Powell's method is clear: it makes possible

strong statements about the behavior of the optimization method. We can expect the algorithm to quickly

converge to a minimizer once in a neighborhood of a solution on which the objective is essentially quadratic.

Finite termination on quadratic objectives was a frequently expressed concern within the optimization

community during the 1960's and 1970's. The contemporary numerical results produced by the optimization

community (for analytical, closed-form objective functions, it should be noted) evidence this concern. Most

reports of the time [5, 9] confirm the supposed superiority of the modeling-based approach, with guaranteed

finite termination as embodied in Powell's derivative-free conjugate directions algorithm.

Yet forty years later, direct search methods, "which employ no techniques of analysis except where there

is a demonstrable advantage in doing so," remain popular, as indicated by any number of measures: satisfied

users, literature citations, and available software. What explains this apparently contradictory historical

development?

zl. Conclusion. Direct search methods remain popular because of their simplicity, flexibility, and reli-

ability. Looking back at the initial development of direct search methods from a remove of forty years, we
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canfirmlyplacewhatis nowknownandunderstoodaboutthesealgorithmsin abroadercontext.
With theexceptionof the simplex-basedmethodsspecificallydiscussedin Section3.2,directsearch

methodsarerobust.Analyticalresultsnowexistto demonstratethatunderassumptionscomparabletothose
commonlyusedto analyzetheglobalbehaviorofalgorithmsforsolvingunconstrainednonlinearoptimization
problems,directsearchmethodscanbeshownto satisfythefirst-ordernecessaryconditionsforaminimizer
(i.e.,convergenceto a stationarypoint). Thisseemsremarkablegiventhat directsearchmethodsneither
requirenorexplicitlyestimatederivativeinformation;in fact,oneobtainstheseguaranteesevenwhenusing
onlyrankinginformation.Thefactthat mostofthedirectsearchmethodsrequireasetof directionsthat
spanthesearchspaceis enoughto guaranteethat sufficientinformationaboutthe localbehaviorof the
functionexiststo safelyreducethesteplengthafterthefull setofdirectionshasbeenqueried.

Followingtheleadof Spendley,Hext,andHimsworth[21],weliketo thinkof directsearchmethodsas
"methodsofsteepdescent."Theseauthorsmadeit quiteclearthattheiralgorithmwasdesignedtoberelated
to themethodof steepestdescent(actuallysteepestascent,sincetheauthorsweremaximizing).Although
noexplicitrepresentationof thegradientis formed,enoughlocalinformationis obtainedby samplingto
ensurethat adownhilldirection(thoughnotnecessarilythesteepestdownhilldirection)canbeidentified.
Spendley,Hext,andHimsworthalsointuitedthat steepdescentwouldbeneededto ensurewhatwenow
callglobalconvergence;furthermore,theyrecognizedtheneedto switchto higher-ordermethodsto obtain
fastlocalconvergence.

Thisbringsusto thesecondpointto bemadeabouttheclassicaldirectsearchmethods.Theydonot
enjoyfiniteterminationonquadraticobjectivesorrapidlocalconvergence.Forthis,oneneedsto capture
thelocalcurvatureof the objective,andthisnecessarilyrequiressomemannerof modelinghence,the
undeniableappealofmodeling-basedapproaches.However,modelingintroducesadditionalrestrictionsthat
maynot alwaysbeappropriatein thesettingsin whichdirectsearchmethodsareused:specifically,the
needto haveexplicitnumericalfunctionvaluesof sufficientreliabilityto allowinterpolationorsomeother
formof approximation.In truth, thejury is still out ontheeffectivenessof addingthisadditionallayerof
informationto devisederivative-freemethodsthat alsoapproximatecurvature(second-order)information.
Severalgroupsof researchersarecurrentlylookingfor a derivative-freeanalogof theeleganttrust region
globalizationtechniquesfor quasi-Newtonmethodsthat switchseamlesslybetweenfavoringthe Cauchy
(steepest-descent)directionto ensureglobalconvergenceandthe Newtondirectionto ensurefast local
convergence.

Weclosewith theobservationthat,sincenonlinearoptimizationproblemscomein allforms,thereisno
"one-size-fits-all"algorithmthat cansuccessfullysolveall problems.Directsearchmethodsaresometimes
used inappropriatelyasthemethodof firstrecoursewhenotheroptimizationtechniqueswouldbemore
suitable.But directsearchmethodsarealsoused appropriatelyasthemethodsof last recourse,when
otherapproacheshavebeentriedandfailed.Anypracticaloptimizerwouldbewell-advisedto includedirect
searchmethodsamongtheirmanytoolsof thetrade. Analysisnowconfirmswhatpractitionersin many
differentfieldshavelongrecognized:acarefullychosen,carefullyimplementeddirectsearchmethodcanbe
aneffectivetoolfor solvingmanynonlinearoptimizationproblems.
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